About 54% people said, The purpose of choke in tube light is to increase the voltage momentarily, says lenseye Online Poll.
Latest News Technology & Science Top News

About 54% people said, The purpose of choke in tube light is to increase the voltage momentarily, says lenseye Online Poll.

About 54% people said, The purpose of choke in tube light is to increase the voltage momentarily, says lenseye Online Poll.11 January 2015 :: About 54% people said The purpose of choke in tube light is To increase the voltage momentarily, 23% said to decrease the voltage momentarily, whereas 15% people said to decrease the current & 8% voted for to increase the current . The Question of the Weekly Poll was The purpose of choke in tube light is ?

The Nominees were : To decrease the current, To increase the current, To decrease the voltage momentarily & To increase the voltage momentarily

Electrical ballast

 An electrical ballast is a device intended to limit the amount of current in an electric circuit. A familiar and widely used example is the inductive ballast used in fluorescent lamps, to limit the current through the tube, which would otherwise rise to destructive levels due to the tube’s negative resistance characteristic.

 Fluorescent lamps are negative differential resistance devices, so as more current flows through them, the electrical resistance of the fluorescent lamp drops, allowing for even more current to flow. Connected directly to a constant-voltage power supply, a fluorescent lamp would rapidly self-destruct due to the uncontrolled current flow. To prevent this, fluorescent lamps must use an auxiliary device, a ballast, to regulate the current flow through the lamp.

 The terminal voltage across an operating lamp varies depending on the arc current, tube diameter, temperature, and fill gas. A fixed part of the voltage drop is due to the electrodes. A general lighting service 48-inch (1,219 mm) T12 lamp operates at 430 mA, with 100 volts drop. High output lamps operate at 800 mA, and some types operate up to 1.5 A. The power level varies from 33 to 82 watts per meter of tube length (10 to 25 W/ft) for T12 lamps.

 The simplest ballast for alternating current (AC) use is an inductor placed in series, consisting of a winding on a laminated magnetic core. The inductance of this winding limits the flow of AC current. This type is still used, for example, in 120 volt operated desk lamps using relatively short lamps. Ballasts are rated for the size of lamp and power frequency. Where the AC voltage is insufficient to start long fluorescent lamps, the ballast is often a step-up autotransformer with substantial leakage inductance (so as to limit the current flow). Either form of inductive ballast may also include a capacitor for power factor correction.

230 V ballast for 18–20 W

 Many different circuits have been used to operate fluorescent lamps. The choice of circuit is based on AC voltage, tube length, initial cost, long term cost, instant versus non-instant starting, temperature ranges and parts availability, etc.

 Fluorescent lamps can run directly from a direct current (DC) supply of sufficient voltage to strike an arc. The ballast must be resistive, and would consume about as much power as the lamp. When operated from DC, the starting switch is often arranged to reverse the polarity of the supply to the lamp each time it is started; otherwise, the mercury accumulates at one end of the tube. Fluorescent lamps are (almost) never operated directly from DC for those reasons. Instead, an inverter converts the DC into AC and provides the current-limiting function as described below for electronic ballasts.

Electronic ballasts

Electronic ballasts employ transistors to change the supply frequency into high-frequency AC while also regulating the current flow in the lamp. Some still use an inductance to limit the current, but the higher frequency allows a much smaller inductance to be used. Others use a capacitor-transistor combination to replace the inductor, since a transistor and capacitor working together can perfectly simulate the action of an inductor. These ballasts take advantage of the higher efficacy of lamps operated with higher-frequency current, which rises by almost 10% at 10 kHz, compared to efficiency at normal power frequency. When the AC period is shorter than the relaxation time to de-ionize mercury atoms in the discharge column, the discharge stays closer to optimum operating condition. Electronic ballasts typically work in rapid start or instant start mode. Electronic ballasts are commonly supplied with AC power, which is internally converted to DC and then back to a variable frequency AC waveform. Depending upon the capacitance and the quality of constant-current pulse-width modulation, this can largely eliminate modulation at 100 or 120 Hz.

 Low cost ballasts mostly contain only a simple oscillator and series resonant LC circuit. When turned on, the oscillator starts, and resonant current causes on the LC circuit. And this resonant current directly drive the switching transistor through the ring core transformer. This principle is called the current resonant inverter circuit. After a short time the voltage across the lamp reaches about 1 kV and the lamp ignites. The process is too fast to preheat the cathodes, so the lamp instant-starts in cold cathode mode. The cathode filaments are still used for protection of the ballast from overheating if the lamp does not ignite. A few manufacturers use positive temperature coefficient (PTC) thermistors to disable instant starting and give some time to preheat the filaments.

 More complex electronic ballasts use programmed start. The output frequency is started above the resonance frequency of the output circuit of the ballast; and after the filaments are heated, the frequency is rapidly decreased. If the frequency approaches the resonant frequency of the ballast, the output voltage will increase so much that the lamp will ignite. If the lamp does not ignite, an electronic circuit stops the operation of the ballast.

 Many electronic ballasts are controlled by a microcontroller or similar, and these are sometimes called digital ballasts. Digital ballasts can apply quite complex logic to lamp starting and operation. This enables functions such as testing for broken electrodes and missing tubes before attempting to start, auto detect tube replacement, and auto detection of tube type, such that a single ballast can be used with several different tubes, even those that operate at different arc currents, etc. Once such fine grained control over the starting and arc current is achievable, features such as dimming, and having the ballast maintain a constant light level against changing sunlight contribution are all easily included in the embedded microcontroller software, and can be found in various manufacturers’ products.

 Since introduction in the 1990s, high frequency ballasts have been used in general lighting fixtures with either rapid start or pre-heat lamps. These ballasts convert the incoming power to an output frequency in excess of 20 kHz. This increases lamp efficiency. These are used in several applications, including new generation tanning lamp systems, whereby a 100 watt lamp (e.g., F71T12BP) can be lit using 90 watts of actual power while obtaining the same luminous flux (measured in lumens) as magnetic ballasts. These ballasts operate with voltages that can be almost 600 volts, requiring some consideration in housing design, and can cause a minor limitation in the length of the wire leads from the ballast to the lamp ends.

Leave a Reply