Article / Story / Poem / Short Story Technology & Science

Electronic Fuel Injection ( EFI )

EFIFuel injection is a system for admitting fuel into an internal combustion engine. It has become the primary fuel delivery system used in automotive engines, having replaced carburetors during the 1980s and 1990s. A variety of injection systems have existed since the earliest usage of the internal combustion engine.

The primary difference between carburetors and fuel injection is that fuel injection atomizes the fuel by forcibly pumping it through a small nozzle under high pressure, while a carburetor relies on suction created by intake air accelerated through a Venturi tube to draw the fuel into the airstream.

Modern fuel injection systems are designed specifically for the type of fuel being used. Some systems are designed for multiple grades of fuel (using sensors to adapt the tuning for the fuel currently used). Most fuel injection systems are for gasoline or diesel applications.

The functional objectives for fuel injection systems can vary. All share the central task of supplying fuel to the combustion process, but it is a design decision how a particular system is optimized. There are several competing objectives such as:

Power output
Fuel efficiency
Emissions performance
Ability to accommodate alternative fuels
Driveability and smooth operation
Initial cost
Maintenance cost
Diagnostic capability
Range of environmental operation
Engine tuning
Driver benefits

Operational benefits to the driver of a fuel-injected car include smoother and more dependable engine response during quick throttle transitions, easier and more dependable engine starting, better operation at extremely high or low ambient temperatures, smoother engine idle and running, increased maintenance intervals, and increased fuel efficiency. On a more basic level, fuel injection does away with the choke, which on carburetor-equipped vehicles must be operated when starting the engine from cold and then adjusted as the engine warms up.
Environmental benefits

Fuel injection generally increases engine fuel efficiency. With the improved cylinder-to-cylinder fuel distribution of multi-point fuel injection, less fuel is needed for the same power output (when cylinder-to-cylinder distribution varies significantly, some cylinders receive excess fuel as a side effect of ensuring that all cylinders receive sufficient fuel).

Exhaust emissions are cleaner because the more precise and accurate fuel metering reduces the concentration of toxic combustion byproducts leaving the engine, and because exhaust cleanup devices such as the catalytic converter can be optimized to operate more efficiently since the exhaust is of consistent and predictable composition.
Electronic injection

The first commercial electronic fuel injection (EFI) system was Electrojector, developed by the Bendix Corporation and was offered by American Motors Corporation (AMC) in 1957. The Rambler Rebel, showcased AMC’s new 327 cu in (5.4 L) engine. The Electrojector was an option and rated at 288 bhp (214.8 kW). The EFI produced peak torque 500 rpm lower than the equivalent carburetored engine. The cost of the EFI option was US$395 and it was available on 15 June 1957. Electrojector’s teething problems meant only pre-production cars were so equipped: thus, very few cars so equipped were ever sold and none were made available to the public. The EFI system in the Rambler ran fine in warm weather, but suffered hard starting in cooler temperatures.

Chrysler offered Electrojector on the 1958 Chrysler 300D, DeSoto Adventurer, Dodge D-500 and Plymouth Fury, arguably the first series-production cars equipped with an EFI system. It was jointly engineered by Chrysler and Bendix. The early electronic components were not equal to the rigors of underhood service, however, and were too slow to keep up with the demands of “on the fly” engine control. Most of the 35 vehicles originally so equipped were field-retrofitted with 4-barrel carburetors. The Electrojector patents were subsequently sold to Bosch.

Bosch developed an electronic fuel injection system, called D-Jetronic (D for Druck, German for “pressure”), which was first used on the VW 1600TL/E in 1967. This was a speed/density system, using engine speed and intake manifold air density to calculate “air mass” flow rate and thus fuel requirements. This system was adopted by VW, Mercedes-Benz, Porsche, Citroën, Saab, and Volvo. Lucas licensed the system for production with Jaguar.

Bosch superseded the D-Jetronic system with the K-Jetronic and L-Jetronic systems for 1974, though some cars (such as the Volvo 164) continued using D-Jetronic for the following several years. In 1970, the Isuzu 117 Coupé was introduced with a Bosch-supplied D-Jetronic fuel injected engine sold only in Japan.
Chevrolet Cosworth Vega engine showing Bendix electronic fuel injection (in orange).

In Japan, the Toyota Celica used electronic, multi-port fuel injection in the optional 18R-E engine in January 1974. Nissan offered electronic, multi-port fuel injection in 1975 with the Bosch L-Jetronic system used in the Nissan L28E engine and installed in the Nissan Fairlady Z, Nissan Cedric, and the Nissan Gloria. Nissan also installed multi-point fuel injection in the Nissan Y44 V8 engine in the Nissan President. Toyota soon followed with the same technology in 1978 on the 4M-E engine installed in the Toyota Crown, the Toyota Supra, and the Toyota Mark II. In the 1980s, the Isuzu Piazza, and the Mitsubishi Starion added fuel injection as standard equipment, developed separately with both companies history of diesel powered engines. 1981 saw Mazda offer fuel injection in the Mazda Luce with the Mazda FE engine, and in 1983, Subaru offered fuel injection in the Subaru EA81 engine installed in the Subaru Leone. Honda followed in 1984 with their own system, called PGM-FI in the Honda Accord, and the Honda Vigor using the Honda ES3 engine.

The limited production Chevrolet Cosworth Vega was introduced in March 1975 using a Bendix EFI system with pulse-time manifold injection, four injector valves, an electronic control unit (ECU), five independent sensors and two fuel pumps. The EFI system was developed to satisfy stringent emission control requirements and market demands for a technologically advanced responsive vehicle. 5000 hand-built Cosworth Vega engines were produced but only 3,508 cars were sold through 1976.

The Cadillac Seville was introduced in 1975 with an EFI system made by Bendix and modelled very closely on Bosch’s D-Jetronic. L-Jetronic first appeared on the 1974 Porsche 914, and uses a mechanical airflow meter (L for Luft, German for “air”) that produces a signal that is proportional to “air volume”. This approach required additional sensors to measure the atmospheric pressure and temperature, to ultimately calculate “air mass”. L-Jetronic was widely adopted on European cars of that period, and a few Japanese models a short time later.

In 1980, Motorola (now Freescale) introduced the first electronic engine control unit, the EEC-III. Its integrated control of engine functions (such as fuel injection and spark timing) is now the standard approach for fuel injection systems. The Motorola technology was installed in Ford North American products.

Leave a Reply